

Synse Plugin SDK

The Synse Plugin SDK is the official SDK used to write plugins for
Synse Server [https://github.com/vapor-ware/synse-server] in order to provide
support for additional devices. Synse Server provides an HTTP API for monitoring
and controlling physical and virtual devices, but it is the backing plugins that
provide the support (telemetry and control) for all of the devices that Synse Server
exposes.

The SDK handles most of the common functionality needed for plugins, such as configuration
parsing, background read/write, transaction generation and tracking, meta-info caching, and more.
This means the plugin author should only need to worry about the plugin-specific device support.

[image: _images/plugin-arch.svg]
User Guide

The official guide for using the Synse Plugin SDK. This section goes over some of the
SDK basics and provides a verbose tutorial on how to build a simple plugin. With this
information, along with the GoDoc [https://godoc.org/github.com/vapor-ware/synse-sdk/sdk],
you should be able to make the most out of the Plugin SDK.

	The Basics
	Architecture Overview

	The Data Manager

	The Read and Write Loops

	Devices

	Readings

	Advanced Usage
	Device Enumeration Handler

	Pre Run Actions

	Device Setup Actions

	C Backend

	Plugin Configuration
	Plugin Configuration

	Device Prototype Configuration

	Device Instance Configuration

	Environment Overrides

	Tutorial
	0. Figure out desired behavior

	1. Create the plugin skeleton

	2. Write the plugin configurations

	3. Write handlers for the device(s)

	4. Create and configure the plugin

	5. Plugin Summary

	6. Build and run the plugin

	7. Using with Synse Server

Community Guide

Learn about the Synse Plugin SDK ecosystem and community. This section outlines the
community guidelines, provides license info, and gives details on how to contribute
to the Plugin SDK.

	Community Plugins
	Contributing

	Plugins

	License

	Contributing
	Reporting an Issue

	Requesting a Feature

	Release Process
	Major Version

	Minor Version

	Micro Version

Development

Learn about the development processes for the Synse Plugin SDK. If you want to contribute
to, play around with, or fork the Plugin SDK, this section will familiarize you with the
development workflow, testing practices, etc.

	Developer Setup
	Getting Started

	Workflow

	CI

	Testing
	Writing Tests

	Running Tests

The Basics

This page describes some of the basic concepts and features of the SDK for
plugin development that most, if not all plugins, will use. See the
Advanced Usage page for an overview of some of the more advanced features
of the plugin SDK.

Architecture Overview

Before describing the various pieces of the SDK, it makes sense to talk about
the architecture of a plugin at a higher level. This will help to provide some
greater context around some of the components described here and in other parts
of the documentation.

For this overview, there are two levels of architecture we will look at:

Plugin Integration with Synse Server

[image: ../_images/synse-server-simple-arch.svg]The diagram above provides a high level depiction of how plugins are used
by Synse Server. In short, when an HTTP API request comes into Synse Server, e.g.
a read request, that request will come with routing information for the device
it wants to read from, <rack id>/<board id>/<device id>.

This routing information is used by Synse Server to lookup the device and figure
out which plugin owns that device and is responsible for its reads/writes. The
lookup is done using a meta-info cache that is built by Synse Server on startup
when it registers configured plugins and requests meta-info for the devices they
manage.

Once Synse Server knows where the request is going, it sends over all relevent
information to that plugin via the internal gRPC API [https://github.com/vapor-ware/synse-server-grpc].
Then, it is up to the plugin to fulfil the request using whatever protocol it
implements and return the appropriate response back to Synse Server.

Plugin Data Flow

[image: ../_images/plugin-arch1.svg]The diagram above provides a high level depiction of some of the data flows
in a plugin, namely for reads and writes. metainfo and transaction
requests are less interesting to the reader since they are handled by the SDK.

When a gRPC read request comes in, the plugin’s gRPC read handler will look up
that device in a readings cache. If the device does not exist, no reading is
returned. If it does exist, that reading is returned.

The reading cache itself is updated on an interval (as set via the plugin
configuration) by a “reader” goroutine. This goroutine iterates through all of
the configured Devices and, if they are readable, executes the read handler
for that device. The reading cache is updated with the reading returned from
that handler.

When a gRPC write request comes in, the process flow is a little different.
The gRPC server’s write handler will first create a transaction for the write
and then put the write transaction onto a write queue. The transaction is
returned to Synse Server – writes are asynchronous and the status of the
write should be checked via the returned transaction.

Once a write transaction is on the queue, it will wait for the write goroutine
to take it off the queue and fulfil the transaction’s write request. This is
also done on an interval (set via the plugin configuration).

The Data Manager

The Data Manager is a core component of a plugin. While the user should never
have to directly interact with the Data Manager, it is still good to know about.

The data manager is in charge of the read goroutine, the write goroutine, and
the data that gets passed to and from them. It holds the “read cache” and the
“write queue” and manages locking around data access, when necessary.

The Read and Write Loops

Reading and writing happens in separate loops. More specifically, reading and
writing happens in different goroutines altogether. This is done to allow different
intervals around reading and writing (e.g. you may want your plugin to update
quickly – write every 1s, but you may not need to update readings as quickly –
read every 30s).

A plugin can run in one of two modes: serial or parallel. These mode
settings directly effect the behavior of the read/write goroutines. In serial
mode, device access will be locked – reading and writing cannot happen
simultaneously. In parallel mode, there is no locking – reads and writes
can happen simultaneously.

Devices

Within the SDK, a Device [https://godoc.org/github.com/vapor-ware/synse-sdk/sdk#Device]
is really just a model that holds the configuration information joined from
a prototype config and a device instance config.

The Devices hold all of the meta-information for a device as well as references
to their read and write handlers and identifier handler.

Readings

A Reading [https://godoc.org/github.com/vapor-ware/synse-sdk/sdk#Reading]
describes a single data point read from a device. It consists of the
reading type, the reading value, and the time at which the reading was
taken.

When generating new readings within a Device’s read handler, it is important
to not initialize a Read struct directly, but instead to use the SDK’s
NewReading function. This function will auto-populate the timestamp field
with a timestamp in the RFC3339Nano format, which is the standard time format
for plugins and Synse Server.

Advanced Usage

This page describes some of the more advanced features of the SDK for plugin development.

Device Enumeration Handler

The Device Enumeration [https://godoc.org/github.com/vapor-ware/synse-sdk/sdk#DeviceEnumerator] Handler,

type DeviceEnumerator func(map[string]interface{}) ([]*config.DeviceConfig, error)

is a handler that allows a plugin to register device instances programmatically, not through
pre-defined YAML. A good use case for this is IPMI, where the plugin will know which BMCs to
reach out to, but not which devices are on the BMCs. Instead of manually going through and
constructing the configuration for each server, this can be done through a device enumeration
handler that connects with the BMC, get all devices it has, and then initialize plugin Device
instances for those found devices.

The map[string]interface{} that is the input parameter to the DeviceEnumerator function
type is the map defined in the plugin configuration under the auto_enumerate key. Any values
can be specified there, under any nesting, but it is up to the plugin writer to parse them correctly.

For more, see the Auto Enumerate Example Plugin [https://github.com/vapor-ware/synse-sdk/tree/master/examples/auto_enumerate].

Pre Run Actions

Pre Run Actions are actions that the plugin should perform before it starts to
run the gRPC server and start the read/write goroutines. These are actions that
should be used for plugin-wide setup actions, should a plugin require it. This could
be performing some kind of authentication, verifying that some backend exists and is
reachable, etc.

Pre Run Actions should be defined as part of plugin initialization and should
be registered with the plugin before it is run.

A pre run action should fulfil the pluginAction type

type pluginAction func(p *Plugin) error

The pluginAction should then be registered with the plugin via the
plugin.RegisterPreRunActions [https://godoc.org/github.com/vapor-ware/synse-sdk/sdk#Plugin.RegisterPreRunActions]
function.

An (abridged) example:

// preRunAction defines a function we will run before the
// plugin starts its main run logic.
func preRunAction(p *sdk.Plugin) error {
 return backend.VerifyRunning() // do some action
}

func main() {
 // Create a new Plugin
 plugin, err := sdk.NewPlugin(handlers, nil)
 if err != nil {
 log.Fatal(err)
 }

 // Register the action with the plugin.
 plugin.RegisterPreRunActions(
 preRunAction,
)
}

For more, see the Pre Run Actions Example Plugin [https://github.com/vapor-ware/synse-sdk/tree/master/examples/pre_run_actions].

Device Setup Actions

Some devices might need a setup action performed before the plugin starts to read
or write to them. As an example, this could be performing some type of authentication,
or setting some bit in a register. The action itself is plugin (and protocol) specific
and does not matter to the SDK.

Device Setup Actions should be defined as part of plugin initialization and should
be registered with the plugin before it is run.

A device setup action should fulfil the deviceAction type

type deviceAction func(p *Plugin, d *Device) error

The deviceAction should then be registered with the plugin via the
plugin.RegisterDeviceSetupActions [https://godoc.org/github.com/vapor-ware/synse-sdk/sdk#Plugin.RegisterDeviceSetupActions]
function.

An (abridged) example:

// deviceSetupAction defines a function we will use as a
// device setup action.
func deviceSetupAction(p *sdk.Plugin, d *sdk.Device) error {
 return utils.Validate(d) // do some action
}

func main() {
 // Create a new Plugin
 plugin, err := sdk.NewPlugin(handlers, nil)
 if err != nil {
 log.Fatal(err)
 }

 // Register the action with all devices that have
 // the type "airflow".
 plugin.RegisterDeviceSetupActions(
 "type=airflow",
 deviceSetupAction,
)
}

For more, see the Pre Run Actions Example Plugin [https://github.com/vapor-ware/synse-sdk/tree/master/examples/pre_run_actions].

C Backend

Plugins can be written with C backends. In general, this means that the read/write
handlers or some related logic is written in C. This feature is not specific to the
SDK, but is a feature of Go itself.

For more information on this, see the CGo Documentation [https://golang.org/cmd/cgo/]
and the C Plugin [https://github.com/vapor-ware/synse-sdk/tree/master/examples/c_plugin] example.

Plugin Configuration

This page describes the different kinds of configuration a plugin has, and gives
examples for each. There are three basic kinds of configuration:

	Plugin Configuration: Configuration for how the plugin should behave.

	Device Prototype: Meta information for a supported device type.

	Device Instance: Instance information for a supported device type.

Device prototype information is relatively static and should not change much. It
is considered safe to package it with the plugin, e.g. in a Docker image. The
plugin configuration and device instance configuration, however, should be defined
on a per-instance basis.

Plugin Configuration

The plugin configuration is a YAML file the defines some plugin metainfo
and describes how the plugin should operate.

Default Location

The default locations for the plugin configuration (in order of evaluation) are:

/etc/synse/plugin
$HOME/.synse/plugin
$PWD

Where $PWD (or .) is the directory in which the plugin binary is being run from.

Configuration Options

	version

	The version of the configuration scheme.

version: 1.0

	name

	The name of the plugin.

name: example

	debug

	Enables debug logging.

debug: true

	network

	Network settings for the gRPC server.

	type

	The type of networking the gRPC server should use. This should
be one of “tcp” and “unix”.

type: tcp

	address

	The network address. For unix socket-based networking, this should
be the name of the socket. This is typically <plugin-name>.sock,
e.g. example.sock. For tcp, this can be host/port.

address: ":5001"

	settings

	Settings for how the plugin should run, particularly the read/write behavior.

	mode

	The run mode. This can be one of “serial” and “parallel”. In serial mode,
locking is done to ensure reads and writes are not done simultaneously. In
parallel mode, no locking is done so reads and writes can occur simultaneously.

mode: serial

	read

	Settings for device reads.

	enabled

	Blanket enable/disable of reading for the plugin. (default: true)

enabled: false

	interval

	Perform device reads every interval. That is to say for an interval of
1s, the plugin would read from all devices every second. (default: 1s)

interval: 750ms

	buffer

	The size of the read buffer. This is the size of the channel that passes
readings from the read goroutine to the readings cache. (default: 100).

buffer: 150

	write

	Settings for device writes.

	enabled

	Blanket enable/disable of writing for the plugin. (default: true)

enabled: false

	interval

	Perform device writes every interval. That is to say for an interval of
1s, the plugin would write max writes from the write queue every second.
(default: 1s)

interval: 750ms

	buffer

	The size of the write buffer. This is the size of the channel that passes
writings from the gRPC write handler to the write goroutine. (default: 100).

buffer: 150

	max

	The max number of write transactions to process in a single pass of
the write loop. This generally only matters when in serial mode.
(default: 100)

max: 150

	transaction

	Settings for write transactions.

	ttl

	The time to live for a transaction in the transaction cache,
after which it will be removed. (default: 5m)

ttl: 10m

	auto_enumerate

	The auto-enumeration context for a plugin. This is dependent on the plugin
and the device enumeration handler, but in general it can be anything.
For more, see Device Enumeration Handler.

	context

	Configurable context for the plugin. This is generally not used, but is
made available as a general map in order to pass values in/around the plugin
if needed.

	limiter

	Configurations for a rate limiter against reads and writes. Some backends may
limit interactions, e.g. some HTTP APIs. This configuration allows a limiter
to be set up to ensure that a limit is not exceeded.

	rate

	The limit, or maximum frequency of events.

A rate of 0 signifies an unlimited rate.

rate: 500

	burst

	The bucket size for the limiter, or maximum number of events that can
be fulfilled at once.

If this is 0, it will be the same number as the rate.

burst: 30

Example

Below is a complete, if contrived, example of a plugin configuration.

version: 1.0
name: example
debug: true
network:
 type: unix
 address: example.sock
settings:
 mode: parallel
 read:
 interval: 1s
 write:
 interval: 2s

Device Prototype Configuration

Prototype configurations define the static meta-info for a given device type. Additionally,
they define the expected output scheme for those devices.

Default Location

The default location for device instance configurations is

/etc/synse/plugin/config/proto

Configuration Options

	version

	The version of the configuration scheme.

version: 1.0

	prototypes

	A list of prototype objects.

	<proto>.type

	The type of the device. This should match up with the type of the
corresponding instance configuration(s).

type: temperature

	<proto>.model

	The model of the device. This should match up with the model of the
corresponding instance configuration(s).

model: example-temp

	<proto>.manufacturer

	The manufacturer of the device.

manufacturer: Vapor IO

	<proto>.protocol

	The protocol that the device uses to communicate. This is often the same
as the kind of plugin, e.g. “ipmi”, “rs485”.

protocol: i2c

	<proto>.output

	See the output configuration details, below.

The output configuration is a list of reading types. This is separated from
the <proto>.output above only to give it more room on the page.

	output

	A list of the supported reading outputs for the device.

	type

	The type of the reading. This will be the type field
of an sdk.Reading [https://godoc.org/github.com/vapor-ware/synse-sdk/sdk#Reading].

	data_type

	The type of the data. This is the type that the data
will be cast to in Synse Server, e.g. “int”, “float”,
“string”.

	unit

	The specification for the reading’s unit.

	name

	The name of the unit, e.g. “millimeters per second”

	symbol

	The symbol of the unit, e.g. “mm/s”

	precision

	(Optional) The decimal precision of the readings. e.g. a precision
of 3 would round a reading to 3 decimal places.

	range

	(Optional) The range of permissible values for the reading.

	min

	The minimum permissible reading value.

	max

	The maximum permissible reading value.

Example

Below is a complete, if contrived, example of a device prototype configuration.

version: 1.0
prototypes:
 - type: temperature
 model: example-temp
 manufacturer: Vapor IO
 protocol: example
 output:
 - type: temperature
 unit:
 name: degrees celsius
 symbol: C
 precision: 2
 range:
 min: 0
 max: 100

Device Instance Configuration

Device instance configurations define the instance-specific configurations for a device.
This is often, but not exclusively, the information needed to connect to a device, e.g.
an IP address or port. Because device instance configurations should be unique to an instance
of a device, parts of these configurations are also used to generate the composite id hash
for the device.

Default Location

The default location for device instance configurations is

/etc/synse/plugin/config/device

Configuration Options

	version

	The version of the configuration scheme.

version: 1.0

	locations

	A mapping of location alias to location object. Device instances specify their location
by referencing the location alias key.

locations:
 r1b1:
 rack: rack1
 board: board1

	<location>.rack

	The name of the rack for the <location> object. This can be either a string, in which
case it is the rack name, or it can be a mapping. The mapping only supports a single
key from_env, where the value should be the environment variable to get the name from,
e.g. from_env: HOSTNAME

rack:
 from_env: HOSTNAME

	<location>.board

	The name of the board for the <location> object. This should be a string.

	devices

	A list of the device instances, where each item in the list is referenced as item, below.

devices:
 - type: temperature
 model: example-temp
 instances:
 - channel: "0014"
 location: r1b1
 info: Temperature Device 1

	<item>.type

	The type of the device. This should match up with the type specified in the
corresponding prototype config.

type: temperature

	<item>.model

	The model of the device. This should match up with the model specified in the
corresponding prototype config.

model: example-temp

	<item>.instances

	A list of instances for the given device type/model. The items in the list are
objects with no restrictions on the fields/values, except that info and
location are reserved. Each item in the instances list should have a
location specified (the value being a valid location alias, defined in
the locations object, above). The info field is not required, but is used
as a human readable tag for the device which is exposed in the device metainfo.
All other fields are up to the plugin to define and handle and are typically
configurations for connecting to or otherwise communicating with the device.

instances:
 - device_address: "/dev/ttyUSB3"
 base_address: 15
 slave_address: 2
 baud_rate: 19200
 parity: E
 location: r1b1
 info: Example Device 1

Example

Below is a complete, if contrived, example of a device instance configuration.

version: 1.0
locations:
 r1vec:
 rack: rack-1
 board: vec
devices:
 - type: temperature
 model: example-temp
 instances:
 - id: "1"
 location: r1vec
 info: Example Temperature Sensor 1
 - id: "2"
 location: r1vec
 info: Example Temperature Sensor 2
 - id: "3"
 location: r1vec
 info: Example Temperature Sensor 3

Environment Overrides

It may not be convenient to place the configuration files into their default locations,
e.g. when testing locally or mounting into a container. Environment overrides exist that
allow you to tell the plugin where to look for its configuration.

	PLUGIN_CONFIG : Specifies the directory which contains the plugin configuration
file, config.yml.

	PLUGIN_DEVICE_CONFIG : Specifies the directory which contains proto and config
subdirectories that hold the configuration YAMLs for the prototype and instance configurations,
respectively.

	PLUGIN_PROTO_PATH : Specifies the directory which contains the prototype configuration
YAMLs.

	PLUGIN_DEVICE_PATH : Specifies the directory which contains the device instance
configuration YAMLs.

Tutorial

This page will go through a step by step tutorial on how to create a simple plugin. The plugin
we will create in this tutorial will be simple and provide readings for a single device. For
examples of more complex plugins, see the examples directory in the source repo, or see
the Emulator Plugin [https://github.com/vapor-ware/synse-emulator-plugin].

The plugin we will build will provide a single “memory” device which will give readings for
total memory, free memory, and the used percent. To get this memory info we will use
https://github.com/shirou/gopsutil.

0. Figure out desired behavior

Before we dive in and start writing code, its always a good idea to lay out what we want
that code to do. In this case, we’ll outline what we want the plugin to do, and what data
we want it to provide. Since this is a simple, somewhat contrived plugin, these are all
pretty basic.

Goals

	Provide readings for memory usage

	Do not support writing (doesn’t make sense in this case)

	Have the readings be updated every 5 seconds

Devices

	
	One kind of device will be supported: a “memory usage” device. It will provide readings for:

	
	Total Memory (in bytes)

	Free Memory (in bytes)

	Used Percent (percent)

With this outline of what we want in mind, we can start framing up the plugin.

1. Create the plugin skeleton

If you have read the documentation on plugin configuration, you will know that there are
three types of configurations that a plugin uses: plugin config, device instance config,
and device prototype config. What each does is explained in the configuration documentation.
We will need to include those with our plugin, as well as a file to define the plugin.

▼ tutorial-plugin
 ▼ config
 ▼ device
 mem.yml
 ▼ proto
 mem.yml
 config.yml
 plugin.go

First, we will focus on writing the configuration for the plugin and the supported
devices. Note that the plugin configuration does not need to be written first. For
this tutorial we are writing if first, though, to help build an understanding of
how devices are defined and how the plugin will ultimately use them.

2. Write the plugin configurations

As mentioned in the previous section, plugins have three types of configuration:
- Plugin configuration
- Device instance configuration
- Device prototype configuration

First, we’ll start with the plugin configuration.

Plugin Configuration

The plugin configuration defines how the plugin itself will operate. Since
this is a simple, somewhat contrived plugin with only a single readable device,
the configuration will not be too complicated. See the plugin configuration
documentation for more info on how to configure plugins.

First, we will want to name the plugin. Since its job is to provide memory info,
we’ll call it memory.

We’ll also want to decide how we want to communicate with the plugin – via TCP,
or via Unix Socket. Either is fine, but for the tutorial, we’ll use unix socket.
Typically, when naming the unix socket for a plugin, we follow the pattern
<PLUGIN_NAME>.sock, so here it will be memory.sock.

Finally, as per the Goals we laid out in section 0, we want the readings to
be updated every 5 seconds. That means we will need to set the read interval
to 5s. All together, this would look like:

config.yml

version: 1.0
name: memory
debug: false
network:
 type: unix
 address: memory.sock
settings:
 read:
 interval: 5s

In the above, version refers to the version of the configuration file scheme,
not the version of the plugin itself. We’ve also set debug: false to disable
debug logging. If you wish to see debug logs, just set this to true.

Device Prototype Configuration

Next, we want to define the prototype configuration for the memory device. The
prototype configuration is basically device configuration that doesn’t change
between device instances. This is largely device meta-information. The example here
will be simple because our plugin/device is simple. See the documentation on
device prototype configuration for more detailed information.

The prototype configuration really consists of two types of information: device
metainfo, and device output info. The metainfo helps to identify the device. The
output info acts as a template for the readings the device provides and how those
readings should be formatted.

In this simple case, we can say that our device is a “memory” type device. We need
to specify the model as well as the type, since those two bits of info are used to
match prototype configs to their instance configs. We will also define some device
manufacturer and the device protocol, for completeness.

For this example, there isn’t really a manufacturer (its just the amount of memory
we have available), so we can feel free to put whatever we want. Similarly, there
isn’t a well-defined protocol that we are using to communicate with the device
(e.g. HTTP, IPMI, RS-485, etc), so we can also specify whatever we find useful there.

Finally, we’ll need to define the device outputs. As described in section 0, we want
to be able to read the total memory, free memory, and percent used. We can call these
types “total”, “free”, and “percent_used”, respectively.

config/proto/mem.yml

version: 1.0
prototypes:
 - type: memory
 model: tutorial-mem
 manufacturer: virtual
 protocol: os
 output:
 - type: total
 data_type: int
 unit:
 name: bytes
 symbol: B
 - type: free
 data_type: int
 unit:
 name: bytes
 symbol: B
 - type: percent_used
 data_type: float
 unit:
 name: percent
 symbol: "%"

In the above config, the version is the version of the configuration scheme. Note
that we also specified a unit for each reading output. The unit is not required, but
since we expect to get bytes and a percentage for the readings, we can explicitly call
that out here.

Device Instance Configuration

Having a prototype instance is not enough; we need an instance to fulfill that prototype.
This is where the device instance configurations come in. These configs will be joined up with
the existing prototype configs by matching the device type and the device model (e.g.
type: memory and model: tutorial-mem).

Another component to the instance configurations is defining the device location. If you
are familiar with Synse Server, you will know that we currently reference devices via a
rack/board/device hierarchy, e.g. read/rack-1/board-1/device-1. These are effectively
just labels to namespace devices, so they can be whatever you want them to be. For this
tutorial, we’ll say that the rack is local and the board is host. This should result
in the Synse Server URI read/local/host/<device-id>.

Note

Synse Server 2.0 uses the <rack>/<board>/<device> notation for identifying
all devices. This notation is largely historical from the initial design of
Synse Server, which did not aim to be as generalized as it is now. In future
versions (e.g. 3.0), early planning and discussion has the strict rack-board-device
requirements phased out in favor of more generalized labeling. This should not
be any concern now, but something to look for in the future.

The final piece to our configuration is specifying the config for the memory device
instance. Here we will only want one device (we’re only getting memory from one place,
so we only need a single device to do it). As we will see in the next section, we
will need a way to reliably identify this device. For protocols like HTTP, RS-485, and
others, we can do this by using the addressing configuration as part of the ID composite
(if device X can only be reached via unique address A, then address A can help to identify
device X). Since we do not need any protocol-specific configurations for our memory
device, we will just add in an id field that will provide a reliable unique identifier
for that device (since we only have one device, it may seem weird, but if we were to have
two memory devices, we’d need a way to differentiate).

config/device/mem.yml

version: 1.0
locations:
 localhost:
 rack: local
 board: host
devices:
 - type: memory
 model: tutorial-mem
 instances:
 - id: "1"
 location: localhost
 info: Virtual Memory Usage

In the above config, the version is the version of the configuration scheme.

Now, we should have all three configurations completed and ready.

▼ tutorial-plugin
 ▼ config
 ▼ device
 mem.yml ✓
 ▼ proto
 mem.yml ✓
 config.yml ✓
 plugin.go

All that is left is to start writing the plugin itself.

3. Write handlers for the device(s)

If you’ve read through some of the documentation on plugin basics, you should know that
in order to handle the configured devices, handlers for those devices need to be defined.

There are a few kinds of handlers:

	device handler: the read/write handler specific to a single device

	device identifier: the handler that determines how to generate unique ids for all devices
managed by the plugin

	device enumerator: the handler for generating Device instances programmatically, e.g. not
from device instance configuration files.

For our simple plugin, we will not need a device enumerator (we’ve already created the configuration
for the device instance anyways). All plugins require one device handler per configured device type
(e.g. per prototype). Additionally, all plugins require a device identifier because without it, we
would not be able to reliably create deterministic unique ids for all devices.

Device Identifier Handler

We’ll start with the device identifier handler, since its the easiest. In the previous section when
we defined the instance config, we made note that we need an id field to help uniquely identify
the device. Our device identifier will simply extract that field from the config for us.

func GetIdentifiers(data map[string]string) string {
 return data["id"]
}

The data map coming in is a map that is populated with the instance data from the instance
configuration YAML, e.g. in this case

id: "1"
location: localhost
info: Virtual Memory Usage

We get the ID out and return. This gets used in the Plugin SDK as part of a composite of locational
info, prototype metainfo, and this instance info to generate the unique (and reproducible) device id
hash.

Device Handler

Next we’ll define the read-write handler for our device. We won’t do any writing for the device, so
its more of a read handler in this case. To read the memory info, we can use
https://github.com/shirou/gopsutil which can be gotten via

$ go get github.com/shirou/gopsutil/mem

We can use that package to define our read functionality for the memory device. Note that because
this tutorial is simple, we are putting everything in one file, but this is not required and is
discouraged for plugins that do anything beyond serve as an example. See the SDK repo’s examples
directory or the emulator plugin for examples of how to structure plugins.

func Read(device *sdk.Device) ([]*sdk.Reading, error) {
 v, err := mem.VirtualMemory()
 if err != nil {
 return nil, err
 }

 return []*sdk.Reading{
 sdk.NewReading("total", fmt.Sprintf("%v", v.Total)),
 sdk.NewReading("free", fmt.Sprintf("%v", v.Free)),
 sdk.NewReading("percent_used", fmt.Sprintf("%v", v.UsedPercent)),
 }, nil
}

And finally, we’ll need to associate this read function with the device handler itself

var memoryHandler = sdk.DeviceHandler{
 Type: "memory",
 Model: "tutorial-mem",
 Read: Read,
 Write: nil,
}

Now we have our configuration defined and our handlers defined. Next, we put together
the plugin, configure it, and register the handlers.

4. Create and configure the plugin

The creation, configuration, registration, and running of a plugin can all be done
within the main() function. In short, the things that need to happen are:

	create the Handlers

	create the Plugin

	register all handlers

	run the plugin

If that sounds simple – that’s because it should be!

func main() {

 // The device identifier and device enumerator handlers.
 handlers, err := sdk.NewHandlers(GetIdentifiers, nil)
 if err != nil {
 log.Fatal(err)
 }

 // Create the plugin and register the handlers. The second
 // parameter here is nil -- this signifies that no override
 // configuration is being used and to just get the configs
 // from file.
 plugin, err := sdk.NewPlugin(handlers, nil)
 if err != nil {
 log.Fatal(err)
 }

 // Register the device handlers with the plugin.
 plugin.RegisterDeviceHandlers(
 &memoryHandler,
)

 // Run the plugin.
 err = plugin.Run()
 if err != nil {
 log.Fatal(err)
 }
}

There is a lot more that can be done when setting up the plugin, such as specifying
a device enumerator, specifying pre-run actions, and specifying device setup actions.
Since this example plugin is simple, there is no need for that, but those capabilities
are described in the advanced usage documentation.

5. Plugin Summary

To summarize, we should now have a file structure that looks like:

▼ tutorial-plugin
 ▼ config
 ▼ device
 mem.yml
 ▼ proto
 mem.yml
 config.yml
 plugin.go

With the configuration files:

config.yml

version: 1.0
name: memory
debug: false
network:
 type: unix
 address: memory.sock
settings:
 read:
 interval: 5s

config/proto/mem.yml

version: 1.0
prototypes:
 - type: memory
 model: tutorial-mem
 manufacturer: virtual
 protocol: os
 output:
 - type: total
 data_type: int
 unit:
 name: bytes
 symbol: B
 - type: free
 data_type: int
 unit:
 name: bytes
 symbol: B
 - type: percent_used
 data_type: float
 unit:
 name: percent
 symbol: "%"

config/device/mem.yml

version: 1.0
locations:
 localhost:
 rack: local
 board: host
devices:
 - type: memory
 model: tutorial-mem
 instances:
 - id: "1"
 location: localhost
 info: Virtual Memory Usage

And the plugin source code:

plugin.go

package main

import (
 "log"
 "fmt"

 "github.com/shirou/gopsutil/mem"

 "github.com/vapor-ware/synse-sdk/sdk"
)

func GetIdentifiers(data map[string]string) string {
 return data["id"]
}

func Read(device *sdk.Device) ([]*sdk.Reading, error) {
 v, err := mem.VirtualMemory()
 if err != nil {
 return nil, err
 }
 return []*sdk.Reading{
 sdk.NewReading("total", fmt.Sprintf("%v", v.Total)),
 sdk.NewReading("free", fmt.Sprintf("%v", v.Free)),
 sdk.NewReading("percent_used", fmt.Sprintf("%v", v.UsedPercent)),
 }, nil
}

var memoryHandler = sdk.DeviceHandler{
 Type: "memory",
 Model: "tutorial-mem",
 Read: Read,
 Write: nil,
}

func main() {

 // The device identifier and device enumerator handlers.
 handlers, err := sdk.NewHandlers(GetIdentifiers, nil)
 if err != nil {
 log.Fatal(err)
 }

 // Create the plugin and register the handlers. The second
 // parameter here is nil -- this signifies that no override
 // configuration is being used and to just get the configs
 // from file.
 plugin, err := sdk.NewPlugin(handlers, nil)
 if err != nil {
 log.Fatal(err)
 }

 // Register the device handlers with the plugin.
 plugin.RegisterDeviceHandlers(
 &memoryHandler,
)

 // Run the plugin.
 err = plugin.Run()
 if err != nil {
 log.Fatal(err)
 }
}

6. Build and run the plugin

Next we will build and run the plugin locally, without Synse Server in front of it. In order
to interface with the plugin, we’ll use the Synse CLI [https://github.com/vapor-ware/synse-cli].

From within the tutorial-plugin directory,

$ go build -o plugin

Congratulations, the plugin is now built! Now we can run it

$./plugin

Doing this and looking through the output logs, you’ll see that no devices are registered
and some errors were logged around finding device configurations. This is because the SDK
looks in the default /etc/synse/plugin directory for configs, but our configs are local.

We can set an environment variable to tell it the correct place to look.

$ PLUGIN_DEVICE_CONFIG=config ./plugin

Now you should see a single registered tutorial-mem device and no errors. To interact
with the plugin, we can use the CLI

Getting the plugin meta-info

$ synse plugin -u /tmp/synse/procs/memory.sock meta
ID TYPE MODEL PROTOCOL RACK BOARD
65f660ac428556804060c13349e500de memory tutorial-mem os local host

Getting a reading from the device

$ synse plugin -u /tmp/synse/procs/memory.sock read local host 65f660ac428556804060c13349e500de
TYPE VALUE TIMESTAMP
total 8589934592 Thu Apr 19 11:19:36 EDT 2018
free 324714496 Thu Apr 19 11:19:36 EDT 2018
percent_used 73.24576377868652 Thu Apr 19 11:19:36 EDT 2018

The device doesn’t support writes, so writing should fail

$ synse plugin -u /tmp/synse/procs/memory.sock write local host 65f660ac428556804060c13349e500de total 123
rpc error: code = Unknown desc = writing not enabled for device local-host-65f660ac428556804060c13349e500de (no write handler)

Now, you’ve configured, created, and run a plugin. The only thing left to do is
connect it with Synse Server and access the data it provides via Synse Server’s
HTTP API.

7. Using with Synse Server

In this section, we’ll go over how to deploy a plugin with Synse Server. While there are a few
ways of doing it, the recommended way is to run the plugin as a container and link it to the
Synse Server container. This means the plugin will be getting memory info from the container, not
the host machine, but this section just serves as an example of how to do it.

The first thing we will need to do is containerize the plugin. For this, we can write a Dockerfile.
For our Dockerfile, we’ll assume that the binary was built locally, but examples exist in other repos
of how to use docker build stages to containerize the build process as well.

It is also important to note that all configs can be included in the Dockerfile with the plugin,
but it is best practice to not do this. The prototype configs can be included, since they should
not change based on the deployment, but the instance and plugin configs may change, so they should
be provided at runtime.

First, we’ll make sure we have our plugin build locally. We will use the alpine linux base image,
so we want to build it for linux. If you are running on linux, this can be done simply with

$ go build -o plugin

If running on a non linux/amd64 architecture, e.g. Darwin, you will need to cross-compile

$ GOOS=linux GOARCH=amd64 go build -o plugin

Now, we can write our Dockerfile

Dockerfile

FROM alpine

COPY plugin plugin
COPY config/proto /etc/synse/plugin/config/proto

CMD ["./plugin"]

We can build the image as vaporio/tutorial-plugin

$ docker build -t vaporio/tutorial-plugin .

Before we run the image, we’ll want to update the plugin configuration that we will use.
Instead of using unix sockets for networking, we’ll use TCP over port 5001. Change
config.yml to:

version: 1.0
name: memory
debug: false
network:
 type: tcp
 address: ":5001"
settings:
 read:
 interval: 5s

Running via Docker

Now we can run the plugin, supplying the plugin and instance configurations. We will also need
to specify environment variables so the plugin knows where to look for these configurations.

$ docker run -d \
 -p 5001:5001 \
 --name=tutorial-plugin \
 -v $PWD/config/device:/etc/synse/plugin/config/device \
 -v $PWD/config.yml:/tmp/config.yml \
 -e PLUGIN_CONFIG=/tmp \
 vaporio/tutorial-plugin

The plugin should now be running and waiting. You can check docker logs tutorial-plugin
to view the logs and make sure everything is running correctly.

To connect it to Synse Server, you’ll need the Synse Server image. The easiest way is to
just pull it from DockerHub:

$ docker pull vaporio/synse-server

We’ll also need to create a network to link them across.

$ docker network create synse
$ docker network connect synse tutorial-plugin

We’ll now run Synse Server and connect it to the network. Here, we register the tutorial
plugin with Synse Server by using its environment configuration.

$ docker run -d \
 --name=synse-server \
 --network=synse \
 -p 5000:5000 \
 -e SYNSE_PLUGIN_TCP_MEMORY=tutorial-plugin:5001 \
 vaporio/synse-server

Now, you should be ready to use Synse Server to interact with the plugin. See the
Interacting via Synse Server section, below.

Running via Docker Compose

All of the above can be done somewhat simpler via docker compose, using a compose file

tutorial.yml

version: "3"
services:
 synse-server:
 container_name: synse-server
 image: vaporio/synse-server
 ports:
 - 5000:5000
 environment:
 SYNSE_PLUGIN_TCP_MEMORY: tutorial-plugin:5001
 links:
 - tutorial-plugin

 tutorial-plugin:
 container_name: tutorial-plugin
 image: vaporio/tutorial-plugin
 ports:
 - 5001:5001
 volumes:
 - ./config/device:/etc/synse/plugin/config/device
 - ./config.yml:/tmp/config.yml
 environment:
 PLUGIN_CONFIG: /tmp

Then, just bring up the compose file

$ docker-compose -f tutorial.yml up -d

You should now be ready to use Synse Server to interact with the plugin. See the next
section for how to do so.

Interacting via Synse Server

With Synse Server now running locally, we can interact with its HTTP API using curl.

	Check that the server is up and ready

$curl localhost:5000/synse/test
{
 "status":"ok",
 "timestamp":"2018-04-19T16:56:16.085286Z"
}

	Get scan information (e.g., see which devices are available). We should expect
to see the single memory device managed by the plugin.

$ curl localhost:5000/synse/2.0/scan
{
 "racks":[
 {
 "id":"local",
 "boards":[
 {
 "id":"host",
 "devices":[
 {
 "id":"65f660ac428556804060c13349e500de",
 "info":"Virtual Memory Usage",
 "type":"memory"
 }
]
 }
]
 }
]
}

	We can read from that device, and we should expect to get back the total, free, and
percent_used readings from the memory device.

$ curl localhost:5000/synse/2.0/read/local/host/65f660ac428556804060c13349e500de
{
 "type":"memory",
 "data":{
 "total":{
 "value":2096066560,
 "timestamp":"2018-04-19T16:58:53.1370289Z",
 "unit":{
 "symbol":"B",
 "name":"bytes"
 }
 },
 "free":{
 "value":91377664,
 "timestamp":"2018-04-19T16:58:53.1370605Z",
 "unit":{
 "symbol":"B",
 "name":"bytes"
 }
 },
 "percent_used":{
 "value":23.1238824782,
 "timestamp":"2018-04-19T16:58:53.137088Z",
 "unit":{
 "symbol":"%",
 "name":"percent"
 }
 }
 }
}

Now, you have successfully created, configured, and ran a Synse Plugin both on its own
and as part of a deployment with Synse Server. Explore the
Synse Server API [https://vapor-ware.github.io/synse-server/] to see what
else you can do with it.

Community Plugins

Contributing

Below are some open sourced plugins developed by Vapor IO and the Synse
Community. If you have developed your own Synse Plugin and would like to
share it with the community, let us know by creating a new issue or opening
a pull request to add it to this list.

Plugins

Synse Emulator Plugin (GitHub [https://github.com/vapor-ware/synse-emulator-plugin])

A plugin that provides emulated devices with no back-end dependency. This
plugin can be used for development, testing, and to just get familiar with
Synse and plugins.

.

License

The Synse Plugin SDK is licensed under the GPL-3.0 license.

Briefly, that means that:

You may copy, distribute and modify the software as
long as you track changes/dates in source files. Any modifications to or software
including (via compiler) GPL-licensed code must also be made available under
the GPL along with build & install instructions.

– tldrleagal [https://tldrlegal.com/license/gnu-general-public-license-v3-(gpl-3)]

For the full license, see the LICENSE [https://github.com/vapor-ware/synse-sdk/blob/master/LICENSE]
file in the source repo.

Contributing

Reporting an Issue

If you find a bug or experience unexpected behavior with the Synse Plugin SDK,
feel free to open an issue on GitHub [https://github.com/vapor-ware/synse-sdk/issues]

Requesting a Feature

If there is functionality missing from the Synse Plugin SDK that you think would
be nice to have, please open a feature request issue on GitHub [https://github.com/vapor-ware/synse-sdk/issues].

Release Process

The following guidelines describe the criteria for new releases. The Synse
Plugin SDK is versioned with the format major.minor.micro.

Major Version

A major release will include breaking changes. When a new major release
is cut, it will be versioned as X.0.0. For example, if the previous
release version was 1.4.2, the next version would be 2.0.0.

Breaking changes are changes which break backwards compatibility with previous
versions. Typically, this would mean changes to the API. Major releases may also
include bug fixes.

Minor Version

A minor release will not include breaking changes to the API, but may
otherwise include additions, updates, or bug fixes. If the previous release
version was 1.4.2, the next minor release would be 1.5.0.

Minor version releases are backwards compatible with releases of the same major
version number.

Micro Version

A micro release will not include any breaking changes and will typically only
include minor changes or bug fixes that were missed with the previous minor
version release. If the previous release version was 1.4.2, the next micro
release would be 1.4.3.

Developer Setup

This section goes into detail on how to get set up to develop the SDK as well
as various development workflow steps that we use here at Vapor IO.

Getting Started

When first getting started with developing the SDK, you will first need to have Go [https://golang.org/doc/install]
(version 1.9+) installed. To check which version you have, e.g.,

$ go version
go version go1.9.1 darwin/amd64

Then, you will need to get the SDK source either by checking out the repo via git,

$ git clone https://github.com/vapor-ware/synse-sdk.git
$ cd synse-sdk

Or via go get

$ go get -u github.com/vapor-ware/synse-sdk/sdk
$ cd $GOPATH/src/github.com/vapor-ware/synse-sdk

Now, you should be ready to start developing on the SDK.

Workflow

To aid in the developer workflow, Makefile targets are provided for common development
tasks. To see what targets are provided, see the project Makefile, or run make help
out of the project repo root.

$ make help
build Build the SDK locally
ci Run CI checks locally (build, test, lint)
clean Remove temporary files
cover Run tests and open the coverage report
dep Ensure and prune dependencies. Do not update existing dependencies.
dep-update Ensure and prune dependencies. Update existing dependencies.
docs Build the docs (via Slate)
examples Build the examples
fmt Run goimports on all go files
help Print usage information
lint Lint project source files
setup Install the build and development dependencies
test Run all tests
version Print the version of the SDK

In general when developing, tests should be run (e.g. make test) and the could should
be formatted (make fmt) and linted (make lint). This ensures that the code works
and is consistent and readable. Tests should also be added or updated as appropriate
(see the Testing section).

CI

All commits and pull requests to the Synse Plugin SDK trigger a build in Circle CI [https://circleci.com/gh/vapor-ware/synse-sdk].
The CI configuration can be found in the repo’s .circleci/config.yml file. In summary,
a build triggered by a commit will:

	Install dependencies

	Run linting

	Check formatting

	Run tests with coverage reporting (and upload results to CodeCov)

	Build the example plugins in the examples directory

When a tag is pushed to the repo, CI checks that the tag version matches the SDK version
specified in the repo, then generates a changelog and drafts a new release for that version.

Testing

The Synse Plugin SDK strives to follow the Golang testing [https://golang.org/pkg/testing/]
best practices. Tests for each file are found in the same directory following the pattern
FILENAME_test.go, so given a file named plugin.go, the test file would be plugin_test.go.

Writing Tests

There are many articles [https://blog.alexellis.io/golang-writing-unit-tests/] and tutorials
out there on how to write unit tests for Golang. In general, this repository tries to follow them
as best as possible and also tries to be consistent with how tests are written. This makes
them easier to read and maintain. When writing new tests, use the existing ones as a guide.

Whenever additions or changes are made to the code base, there should be tests that cover
them. Many unit tests already exists, so some changes may not require tests to be added.
To help ensure that the SDK is well-tested, we upload coverage reports to
CodeCov [https://codecov.io/gh/vapor-ware/synse-sdk]. While good code coverage does not
ensure bug-free code, it can still be a useful indicator.

Running Tests

Tests can be run with go test, e.g.

$ go test ./sdk/...

For convenience, there is a make target to do this

$ make test

While the above make target will report coverage at a high level, it can be useful to
see a detailed coverage report that shows which lines were hit and which were missed.
For that, you can use the make target

make cover

This will run tests and collect and join coverage reports for all packages/sub-packages
and output them as an HTML page.

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/logo.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Synse Plugin SDK

 		
 The Basics

 		
 Architecture Overview

 		
 Plugin Integration with Synse Server

 		
 Plugin Data Flow

 		
 The Data Manager

 		
 The Read and Write Loops

 		
 Devices

 		
 Readings

 		
 Advanced Usage

 		
 Device Enumeration Handler

 		
 Pre Run Actions

 		
 Device Setup Actions

 		
 C Backend

 		
 Plugin Configuration

 		
 Plugin Configuration

 		
 Default Location

 		
 Configuration Options

 		
 Example

 		
 Device Prototype Configuration

 		
 Default Location

 		
 Configuration Options

 		
 Example

 		
 Device Instance Configuration

 		
 Default Location

 		
 Configuration Options

 		
 Example

 		
 Environment Overrides

 		
 Tutorial

 		
 0. Figure out desired behavior

 		
 Goals

 		
 Devices

 		
 1. Create the plugin skeleton

 		
 2. Write the plugin configurations

 		
 Plugin Configuration

 		
 Device Prototype Configuration

 		
 Device Instance Configuration

 		
 3. Write handlers for the device(s)

 		
 Device Identifier Handler

 		
 Device Handler

 		
 4. Create and configure the plugin

 		
 5. Plugin Summary

 		
 6. Build and run the plugin

 		
 7. Using with Synse Server

 		
 Running via Docker

 		
 Running via Docker Compose

 		
 Interacting via Synse Server

 		
 Community Plugins

 		
 Contributing

 		
 Plugins

 		
 License

 		
 Contributing

 		
 Reporting an Issue

 		
 Requesting a Feature

 		
 Release Process

 		
 Major Version

 		
 Minor Version

 		
 Micro Version

 		
 Developer Setup

 		
 Getting Started

 		
 Workflow

 		
 CI

 		
 Testing

 		
 Writing Tests

 		
 Running Tests

_static/up.png

